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1. Groups

1.1. Definition of a Group. Abstract mathematical objects are typically defined
in terms of an underlying set and some additional structure on that set. In the case
of groups, the additional structure is a single binary operation which is associative
and admits an identity and inverses. The operation could normally be denoted as
addition, multiplication, composition, or various other symbols; however, it is con-
venient and conventional to denote the operation by multiplication when speaking
of groups in general. Thus statements of definitions, propositions, remarks, and so
forth which apply to all groups are stated in this way, and the reader is asked to
translate to the notation appropriate in a given example.

Definition 1. A group is a set G together with a binary operation

· : G×G→ G

such that

(G1) g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G (associativity);
(G2) ∃1 ∈ G such that 1 · g = g · 1 = g for all g ∈ G (existence of an identity);
(G3) ∀g ∈ G∃g−1 ∈ G such that gg−1 = g−1g = 1 (existence of inverses).

Let G be group. We say that G is abelian if

(G4) g1g2 = g2g1 for all g1, g2 ∈ G (commutativity).

We may identify a group in the form (G, ∗, e), indicating that G is the underlying
set, ∗ is the binary operation, and e is the identity element. However, the underlying
set and the identity can actually be recovered from the binary operation itself, so
indicating G and e is a courtesy. On the other hand, it is conventional to write “let
G be a group”; this indicates that G is the underlying set under consideration, and
· : G × G → G is the associative binary operator with identity denoted by 1 and
the inverse of g denoted by g−1.

Remark 1. (Generalized Associativity)
Let A be a set with a multiplicative binary operation, and let a1, . . . , an ∈ G. Since
the operation is binary, we inductively define product without parentheses as

a1a2 · · · an = (a1a2 · · · an−1)an;

that is, multiply from left to right.
Let r, n ∈ N with 1 < r < n, and let G be a group with g1, . . . , gn ∈ G. Since G

is a group, the operation is associative by (G1), and induction shows that

(g1g2 · · · gr)(gr+1gr+2 · · · gn) = g1g2...grgr+1gr+2...gn.
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Remark 2. (Uniqueness of Identity)
Let G be a group and suppose that e, f ∈ G such that eg = ge = g and fg = gf = g
for every g ∈ G. Then e = ef = f , so e = f . Thus the element 1 from (G2) is
unique, and is called the identity of the group.

Remark 3. (Uniqueness of Inverses)
Let G be a group and let g ∈ G. Suppose that a, b ∈ G such that ag = ga = 1
and bg = gb = 1. Then a = a(gb) = (ag)b = b, so a = b. Thus in the presence of
associativity, the element g−1 from (G3) is unique, and is called the inverse of g.

Remark 4. (Standard Notation)
Standard conventions for binary operations written multiplicatively and additively
are in force. Let G be a group, g ∈ G, and n ∈ Z.

If the operation is “dot” (·), it is usually referred to as “multiplication”, and the
· is dropped from the notation whenever convenient. Also:

• the identity is denoted by 1 and is called “one”;
• the inverse of g is denoted by g−1 and is called “g inverse”;
• for n = 0, gn = 1;
• for n > 0, gn = g · · · g (n times);
• for n < 0, gn = (g−1)−n.

If the operation is “plus” (+), it is usually referred to as “addition”, and is
assumed to be commutative, that is, g + h = h+ g for all g, h ∈ G. Also:

• the identity is denoted by 0 and is called “zero”;
• the inverse of g is denoted by −a and is called “negative g”;
• for n = 0, ng = 0;
• for n > 0, ng = g + · · ·+ g (n times);
• for n < 0, ng = (−n)(−g).

A group under addition is called an additive group.

1.2. Properties of Groups. We now list several properties that are common to
all groups, and are easily derived from the definition. We list these properties in
multiplicative notation, and ask the reader to convert from to additive notation
where appropriate.

Proposition 1. (Cancellation Laws)
Let G be a group and let g, h, k ∈ G. Then

(a) gh = gk ⇒ h = k (left cancellation);
(b) hg = kg ⇒ h = k (right cancellation).

Proof. Keep in mind that the operation is not necessarily commutative. For (a),
multiply on the left by g−1; for (b), multiply on the right by g−1. �

Proposition 2. (Exponential Properties)
Let G be a group. Let g, h ∈ G and m,n ∈ Z. Then

(a) 1−1 = 1;
(b) (g−1)−1 = g;
(c) (gh)−1 = h−1g−1;
(d) (gn)−1 = g−n;
(e) gmgn = gm+n;
(f) (gm)n = gmn.



3

1.3. Examples of Groups. Understanding the theory of groups requires copious
examples, and we give several now. The reader should keep these examples in mind
throughout the course of the development of the general theory.

Example 1. The following are standard additive groups.

• (Z,+, 0), the integers under addition;
• (Q,+, 0), the rational numbers under addition;
• (R,+, 0), the real numbers under addition;
• (C,+, 0), the complex numbers under addition;

In each case, inverses are negatives. All additive groups are assumed be to abelian.

Example 2. Let n be a positive integer, and let Rn denote the set of ordered n-
tuples of real numbers. Then (Rn,+,~0) is an abelian group under vector addition,

where ~0 denotes the zero vector.

Example 3. Let M be a set admitting an associative binary operation with iden-
tity, and define

M∗ = {a ∈M | a is invertible}.
Then M∗ is a group. For example, standard sets produce these groups.

• (Z∗, ·, 1), the invertible integers under multiplication (Z∗ = {±1});
• (Q∗, ·, 1), the nonzero rational numbers under multiplication;
• (R∗, ·, 1), the nonzero real numbers under multiplication;
• (C∗, ·, 1), the nonzero complex numbers under multiplication.

In each case, inverses are reciprocals. Multiplicative groups are not assumed to be
abelian, although these are abelian.

Example 4. Let Zn denote the set of residues class modulo n. The set Zn is a
group under addition, with 0 the identity and n− a the inverse of a. This abelian
group contains n elements.

Example 5. Let Z∗n = {a ∈ Zn | gcd(a, n) = 1}. Then Z∗n is a group under
multiplication, with identity 1. The inverse of a ∈ Z∗n is x, given from the Euclidean
algorithm equation ax+ ny = 1. This abelian group contains φ(n) elements.

Example 6. Let U = {z ∈ C | |z| = 1} denote the unit circle in the complex plane.
Then U is a group under multiplication. The set U is the image of the function

cis : R→ C given by cis θ = cos θ + i sin θ.

Let z1, z2 ∈ U. Then z1 = cis θ1 and z2 = cis θ2 for some θ1, θ2 ∈ R. Using
trigonometry, we have z1z2 = (cis θ1)(cis θ2) = cis(θ1 + θ2). In particular,

cisn θ = cisnθ.

Let Un = {cis(2πk/n) | k ∈ Z}. Then Un is a group under multiplication
containing n elements. Its elements are exactly the nth roots of unity.

Example 7. Let X be a set, and set Sym(X) = {f : X → X | f is bijective}.
Then (Sym(X), ◦, idX) is a nonabelian group under composition of functions, where
idX : X → X is the identity function given by idX(x) = x.

Example 8. Let X = {1, . . . , n}, and set Sn = Sym(X). Let ε = idX , and write
composition of functions multiplicatively. Then (Sn, ·, ε) is a nonabelian group
containing n! elements.
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Example 9. Let Mm×n(R) be the set of m × n matrices over the real numbers.
Then Mm×n(R) is an abelian group under matrix addition. The identity is the zero
m× n matrix.

Example 10. Let GLn(R) be the set of invertible n × n matrices over the real
numbers. Then GLn(R) is a nonabelian group under matrix multiplication. The
identity is the identity n× n matrix. Note that GLn(R) = (Mn×n(R))∗.

Example 11. Let X be a set, and let P(X) denote the power set of X, which is
the set of all subsets of X. If A,B ⊂ X, define the symmetric difference of A and
B to be A4B, given by

A4B = (A ∪B) r (A ∩B);

Then (P(X),4,∅) is a group under symmetric difference. The identity is ∅, and
the inverse of A ∈ P(X) is itself.

The next example can be used to show that (P(X),4,∅) is abelian.

Example 12. Let G be a group such that g2 = 1 for every g ∈ G.
Show that G is abelian.

Solution. Let g, h ∈ G. Since g2 = 1, multiplying both sides by g−1 gives g = g−1.
Similarly, h = h−1.

Now (gh)2 = 1, whence gh = (gh)−1 = h−1g−1 = hg. Thus G is abelian. �

Definition 2. Let H and K be groups, written multiplicatively. The product of H
and K is the set G = H ×K, together with multiplication defined by

(h1, k1)(h2, k2) = (h1h2, k1k2).

We we are working with two groups G and H written multiplicatively, we may
distinguish the identity elements as 1G and 1H , respectively.

Proposition 3. Let H and K be groups. Then H ×K is a group.

Proof. We verify the three properties of being a group.
(G1) Let g1, g2, g3 ∈ G. Then there exist h1, h2, h3 ∈ H and k1, k2, k3 ∈ K such

that g1 = (h1, k1), g2 = (h2, k2), and g3 = (h3, k3). Then

(g1g2)g3 = ((h1, k1)(h2, k2))(h3, k3) by definition of the set H ×K
= ((h1h2)h3, (k1k2)k3) by definition of the operation on H ×K
= (h1(h2h3), k1(k2k3)) by associativity in H and K

= (h1, k1)((h2, k2)(h3, k3)) by definition of the operation on H ×K
= g1(g2g3) by definition of the set H ×K.

(G2) The identity for H ×K is 1G = (1H , 1K). To verify this, let g ∈ G so that
g = (h, k) for some h ∈ H and k ∈ K. Then

g · 1G = (h, k)(1H , 1K) = (h · 1H , k · 1K) = (h, k) = g;

1G · g = (1H , 1K)(h, k) = (1H · h, 1K · k) = (h, k) = g.

(G3) Let g ∈ G, so that there exist h ∈ H and k ∈ K with g = (h, k). Then
g−1 = (h−1, k−1), since

(h, k)(h−1, k−1) = (hh−1, kk−1) = (1H , 1K) = 1G;

(h−1, k−1)(h, k) = (h−1h, k−1k) = (1H , 1K) = 1G.
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1.4. Cayley Tables. If A is a set with a binary operation, we can list this binary
operation explicitly in a table. The elements of the set are listed vertically on the
left and horizontally across the top to label the rows and columns. If a row is
labeled a and a column is labeled b, the entry in this row and column is ab. This is
called a Cayley table. Such a table defines the operation, and if the tables asserts
that the operation satisfies the three group laws, then the table defines a group. Of
course, this is only practical for relatively small groups.

Example 13. Let K = {e, a, b, c}. Define multiplication on K by

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Then K is a Klein four group; it is abelian.

Example 14. Let Q = {±1,±i,±j,±k}. Define multiplication on Q by

· 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
k −k k −j j i −i 1 −1

Then Q is a quaternion group, which is nonabelian and satisfies

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

Example 15. We produce the Cayley table for S3 = Sym({1, 2, 3}). This is a
group with 3! = 6 elements, and these elements are

S3 = {ε, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}.
Use cycle multiplication to determine products, such as (1 2 3)(1 2) = (1 3).

· ε (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

(1 2 3) (1 2 3) (1 3 2) ε (1 3) (2 3) (1 2)

(1 3 2) (1 3 2) ε (1 2 3) (2 3) (1 2) (1 3)

(1 2) (1 2) (2 3) (1 3) ε (1 2 3) (1 3 2)

(1 3) (1 3) (1 2) (2 3) (1 2 3) ε (1 3 2)

(2 3) (2 3) (1 3) (1 2) (1 3 2) (1 2 3) ε
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2. Subgroups

2.1. Definition of Subgroup. Every abstract mathematical object admits sub-
objects; in the case of groups, the subobjects are called subgroups, which are merely
subsets of the original set which are themselves groups. The definition is designed
to make proving a subset is a subgroup more transparent.

Definition 3. Let G be a group and let H ⊂ G.
We say that H is a subgroup of G, and write H ≤ G, if

(S0) H is nonempty;
(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H;
(S2) h ∈ H ⇒ h−1 ∈ H.

Remark 5. (Subgroups are Groups)
These are exactly the conditions guaranteeing that a subgroup is a subset which
is itself a group under the same binary operation. Conditions (S1) says that the
operation is closed, that is, the restriction of the function · : G×G→ G to H ×H
produces a function defined on H × H, and (S1) ensures that the image of this
function is contained in H, so we have an operation · : H × H → H. Certainly,
since the operation is the same, the associativity of this operation is inherited.

Condition (S2) says that the subset contains inverses. Finally, we note that, in
the presence of (S1) and (S2), property (S0) is equivalent to

(SO) 1 ∈ H.

Indeed, if 1 ∈ H, then H is nonempty. On the other hand, if H is nonempty, then
H contains some element, say h ∈ H. Then h−1 ∈ H by (S2), so 1 = hh−1 ∈ H
by (S1).

Proposition 4. Let G be a group and let H ⊂ G. Then H ≤ G if and only if

(S0) H is nonempty;
(SI) h1, h2 ∈ H ⇒ h1h

−1
2 ∈ H.

Proof.
(⇒) Suppose H ≤ G. Then H satisfies (S0) by hypothesis, and (SI) is an

immediate combination of (S1) and (S2).
(⇐) Suppose that H satisfies (S0) and (SI). Since H is nonempty, let h ∈ H;

then hh−1 = 1 ∈ H. Thus 1 · h−1 = h−1 ∈ H, so H satisfies (S2).
Let h1, h2 ∈ H. Then h1(h−12 )−1 = h1h2 ∈ H, so H satisfies (S1). �

Proposition 5. Let G be a group and let H ⊂ G. Then H ≤ G if

(S0) H is nonempty;
(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H;
(SF) H is finite.

Proof. It suffices to show that in the presence of properties (S0) and (S1), property
(SF) implies property (S2).

By (S0), H is nonempty, so let h ∈ H. Let A be the subset of G given by
A = {hn | n ∈ N}. By (S1), A ⊂ H, so by (SF), A is finite. Thus hn = hm

for some m < n. Thus hn−m = hn(hm)−1 = 1. Therefore hn−m−1h = 1, so
h−1 = hn−m−1 ∈ A ⊂ H, and H satisfies (S2). �
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2.2. Examples of Subgroups. We now list examples of subgroups; some exam-
ples apply to specific groups, whereas others are general principles, in the sense
that certain types of subgroups appear in every group.

Example 16. Let G be a group. Then {1} ≤ G and G ≤ G.

Definition 4. Let G be a group and let H ≤ G. We say that H is proper is H 6= G,
and we say that H is trivial if H = {1}.

We are often interested in proper nontrivial subgroups.

Example 17. The groups Z,Q,R are subgroups of C under addition. The groups
Q∗,R∗,U are subgroups of C∗ under multiplication.

Example 18. The groups Un are subgroups of U under multiplication. If m and
n are positive integers, Um ≤ Un if and only if m | n.

Example 19. Let n ∈ Z and set

nZ = {nk | k ∈ Z}.
Thus nZ is a subgroup of Z under addition.

Given two subgroups of a group G, we can form a new subgroup of G by taking
the intersection.

Proposition 6. Let G be a group and let H,K ≤ G. Then H ∩K ≤ G.

Proof. We verify properties (S0), (S1), and (S2).
(S0) Since H,K ≤ G, we have 1 ∈ H and 1 ∈ K. Thus 1 ∈ H ∩K.
(S1) Let a, b ∈ H ∩K. Then a, b ∈ H and a, b ∈ K, Since H and K are closed

under multiplication, ab ∈ H and ab ∈ K. Thus ab ∈ H ∩K.
(S2) Let a ∈ H ∩K. Then a ∈ H and a ∈ K. Since H and K are closed under

inverses, a−1 ∈ H and a−1 ∈ K. Thus a−1 ∈ H ∩K. �

If G is a group, the intersection of any number of subgroups of G is itself a
subgroup; this generalizes the last proposition.

Proposition 7. Let G be a group and let H be a nonempty collection of subgroups
of G. Then ∩H is a subgroup of G.

Proof. Since 1 ∈ H for every H ∈ H, we see that 1 ∈ ∩H. Let h1, h2 ∈ ∩H. Then
h1, h2 ∈ H for every H ∈ H. Then h1h

−1
2 ∈ H for every H ∈ H because each H is

a subgroup. Thus h1h
−1
2 ∩H. Therefore ∩H ≤ G. �

Example 20. Let m,n ∈ Z and let d = gcd(m,n).
Then dZ = mZ ∩ nZ, so dZ ≤ mZ and dZ ≤ nZ.

Given a group G and an element g ∈ G, we can construct the smallest subgroup
of G which contains g.

Proposition 8. Let G be a group and let g ∈ G. Set

〈g〉 = {gk | k ∈ Z}.
Then 〈g〉 ≤ G.

Proof. Since 1 = g0, 1 ∈ 〈g〉. If gm, gn ∈ 〈g〉, then gmgn = gm+m ∈ 〈g〉. Finally,
if gm ∈ 〈g〉, then (gm)−1 = g−m ∈ 〈g〉. This verifies properties (S0), (S1), and
(S2). �
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2.3. Subgroups of Sn. Small nonabelian groups are most conveniently realized
as subgroups of Sn, and are often written in terms of one or two elements of the
group, where every other element of the group is a product of these.

Example 21. The symmetric group on n points is Sn.

Example 22. The cyclic group on n points, denoted Cn, is the smallest subgroup
of Sn containing the cycle ρ = (1 2 ...n); it consists of all powers of ρ, so

Cn = {ε, ρ, ρ2, . . . , ρn−1}.
For example,

• C2 = {ε, (1 2)};
• C3 = {ε, (1 2 3), (1 3 2)};
• C4 = {ε, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}.

Example 23. View the group S3 as the set of rigid motions of a regular triangle.
Label the vertices 1, 2, and 3. One rotation of the triangle is the permutation
ρ = (1 2 3); then ρ2 = (1 3 2) and ρ3 is the identity ε. If we let τ denote
reflection across the line through vertex 1 and the midpoint of the opposite side,
then τ = (2 3). Then

S3 = {ε, ρ, ρ2, τ, τρ, τρ2},
and we compute its Cayley table using the fact that ρτ = τρ2.

· ε ρ ρ2 τ τρ τρ2

ε ε ρ ρ2 τ τρ τρ2

ρ ρ ρ2 ε τρ2 τ τρ
ρ2 ρ2 ε ρ τρ τρ2 τ
τ τ τρ τρ2 ε ρ ρ2

τρ τρ τρ2 τ ρ2 ε ρ
τρ2 τρ2 τ τρ ρ ρ2 ε

Example 24. Let D4 denote the set of rigid motions of a square. We label the
vertices 1, 2, 3, and 4 to realize D4 as a subgroup of S4. Let ρ = (1 2 3 4) be
rotation by 90◦, and let τ = (2 4) be reflection across the line through 1 and
3. Then ρ2 = (1,3)(2,4), ρ3 = (1 4 3 2), τρ = (1 4)(23), τρ2 = (1 3), and
τρ3 = (1 2)(3 4). Then

D4 = {ε, ρ, ρ2, ρ3, τ, τρ, τρ2, τρ3}.
One may use the fact that ρ2 commutes with every element ofD4, and that τρ = ρ3τ
to compute the entire Cayley table of D4.

Example 25. The dihedral group on n points, denoted Dn, the subgroup of Sn
containing 2n elements which represents the set of rigid motions of a regular n-gon.
If ρ = (1 2 ... n) is rotation and τ is reflection through the line contain vertex
1, then

Dn = {ε, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1}.
In the case n = 3, we have S3 = D3; for larger n, Dn is a proper subgroup of Sn.

Example 26. The alternating group on n points, denoted An, is the smallest
subgroup of Sn which contains all of the three-cycles. For example, A3 = C3, and

A4 = {ε,(1 2 3), (1 3 2), (1 2 4), (1 4 2), (2 3 4), (2 4 3),

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
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3. Cyclic Groups

3.1. Definition of Cyclic Group. A cyclic group is a group generated by a single
element. In multiplication notation, this means that every element in the group is
a power of the generator; in additive notation, this means that every element in
the group is a multiple of the generator.

Definition 5. Let G be a group. We say that G is cyclic if there exists g ∈ G such
that G = 〈g〉. In this case, we say that g generates G.

Example 27. The integers Z form a cyclic group; since every element of Z is a
multiple of 1, 1 is a generator, so Z = 〈1〉. Note the −1 is the only other generator.

Example 28. The modular integers Zn for a cyclic group generated by 1.

Example 29. Let ζ = cis(2π/n). Then Un = 〈ζ〉.

Example 30. Let ρ = (1 2 3) ∈ S3, so that ρ2 = (1 3 2). Let C3 = {ε, ρ, ρ2}.
Then C3 ≤ S3, and C3 = 〈ρ〉 = 〈ρ2〉.

The last three examples are examples of finite cyclic groups; the name “cyclic”
comes from this case. Note that if G is a group and g ∈ G. then 〈g〉 is a subgroup
of G which is cyclic, known as the cyclic subgroup generated by g.

Example 31. Consider the group Z under addition. Then 〈2〉 = 2Z, the set of
even integers.

Example 32. Let ζ ∈ C∗ be given by ζ = cis(2π/30). Then 〈ζ〉 ≤ C∗ is 〈ζ〉 = U30.
Now ζ6 ∈ U30, and 〈ζ6〉 ≤ U30 is 〈cis(2π/5)〉 = U5.

Proposition 9. Let G be a cyclic group. Then G is abelian.

Proof. Since G is cyclic, G = 〈g〉 for some g ∈ G. Then any element in G is of the
form gn for some n ∈ Z. Thus if i, j ∈ Z, then gi and gj are two arbitrary elements
of G. Clearly, gigj = gg...g (i+j times) = gjgi. �

Proposition 10. Let G be a cyclic group and let H ≤ G. Then H is cyclic.

Proof. Let g be a generator for G. Then every element in G is of the form gk for
some k ∈ Z.

If H is trivial, then H = 〈1〉 is cyclic. Suppose that H is nontrivial and let
h ∈ H r {1}. Then h = gk for some k ∈ Z. If k < 0, then h−1 = g−k ∈ H; thus H
contains an element of the form gk where k is a positive integer.

Let k be the smallest positive integer such that gk ∈ H. Let h ∈ H; then h = gl

for some l ∈ Z. There exist unique q, r ∈ Z such that l = kq + r where 0 ≤ r < k.
Then

h = gl = gkq+r = (gk)qgr.

Since gk ∈ H, we have gr ∈ H. But r is nonnegative and less then k, so we must
have r = 0. Thus h = (gk)q, which proves that H = 〈gk〉. �

Proposition 11. Let G be a group. Then G is the union of cyclic groups.

Proof. Let G be a group. Then 〈g〉 ≤ G for any g ∈ G so that G = ∪g∈G〈g〉. �
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3.2. Order of an Element. The order of an element is the length of the cycle it
creates when it is multiplied by itself. It is possible that the order is infinite, in
which case there really is not a cycle; otherwise, however, powers of the element
eventually loop back on themselves, thus creating a cycle of a given length.

Definition 6. Let g ∈ G. The order of g, denoted ord(g), is the smallest positive
integer n ∈ Z such that gn = 1, if such an integer exists; otherwise, ord(g) = ∞.
An exponent of g is any positive integer k ∈ N such that gk = 1.

Proposition 12. Let G be a group and let g ∈ G with ord(g) = n <∞. Then

(a) i, j ∈ {0, . . . , n− 1} and gi = gj ⇒ i = j;
(b) 〈g〉 = {1, g, g2, . . . , gn−1};
(c) |〈g〉| = ord(g);
(d) |G| = ord(g) if and only if G = 〈g〉.

Proof. Let i, j ∈ N with 0 ≤ i ≤ j < n. Suppose that gi = gj . Then gj−i = 1, and
j − i is a nonnegative integer. But j − i < n, and n is the smallest positive integer
such that gn = 1. Thus j = i. This shows that {1, g, g2, . . . , gn−1} ⊂ 〈g〉 is a
collection of n distinct elements. If k ≥ n, then there exist unique integers q, r ∈ Z
such that k = nq+r with 0 ≤ r < n. Now gk = gnq+r = (gn)qgr = 1q ·gr = gr; this
shows that 1, g, . . . , gn−1 is a complete list of the elements in 〈g〉, and |〈g〉| = ord(g).

If |G| = ord(g); since 〈g〉 ≤ G and |〈g〉| = ord(g), we see that G = 〈g〉. On the
other hand, we have already seen that if G = 〈g〉, then |G| = ord(g). �

Proposition 13. Let G be a group and let g ∈ G with ord(g) = n <∞.
Let m ∈ Z. Then

gm = 1 ⇔ n | m.

Proof. Suppose that gm = 1. There exist unique integer q, r ∈ Z with 0 ≤ r < n
such that m = nq + r. Then

gm = gnq+r = gnqgr = (gn)qgr = 1q · gr = gr.

But r is nonnegative and less than n; since n is the smallest positive integer such
that gn = 1, we must have r = 0. Conversely, suppose that n divides m. Then
m = qn for some q ∈ Z, so gm = gqn = (gn)q = 1q = 1. �

Proposition 14. Let G be a group and let g ∈ G with ord(g) = n <∞.
Let m ∈ Z. Then 〈g〉 = 〈gm〉 if and only if gcd(m,n) = 1.

Proof. There exist unique integers q, r ∈ Z such that m = qn + r with 0 ≤ r < n.
Since gn = 1, we see that gm = gr. Without loss of generality, assume that
0 < m < n.

Suppose that gcd(m,n) = d > 1. Then m = kd and n = ld for some integers
k, l > 1. Then (gm)l = gnk = 1, so ord(gm) < n, which shows that 〈gm〉 is properly
contained in 〈g〉.

Suppose that gcd(m,n) = 1. Then there exist x, y ∈ Z such that mx+ ny = 1.
Let gk be an arbitrary member of 〈g〉. Then gk = g(mx+ny)k = gmxkgnyk = gmxk.
This shows that 〈g〉 ⊂ 〈gm〉. The opposite inclusion is obvious, so 〈g〉 = 〈gm〉. �

Proposition 15. Let G be a group and let g ∈ G with ord(g) = n < ∞. Let
d,m ∈ Z be positive with d = gcd(m,n). Then ord(gm) = n

d .

Proof. Exercise. �
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Proposition 16. Let G be a cyclic group with |G| = n <∞.

(a) If H ≤ G, then |H| divides |G|.
(b) If d | n, then there exists a unique subgroup H ≤ G such that |H| = d.

Proof. Let g be a generator for G; then ord(g) = n.
Let H ≤ G. Then H is cyclic, so H = 〈h〉 for some h ∈ G. Since G is cyclic,

h = gm for integer m with 0 ≤ m ≤ n. Let k = ord(gm); we have seen that k
divides n = |G|. This proves (a).

Suppose that d | n; then n = dk for some k ∈ N. Let l = ord(gk). Then
(gk)d = gn = 1, so l divides d. If ord(gk) = l, then gkl = (gk)l = 1, so n divides kl.
Thus d divides l, so l = d. Thus 〈gk〉 is a subgroup of G of order d.

To see that this subgroup is unique, let H be a subgroup of G of order d. Then
H is cyclic, so H = 〈gm〉 for some integer m with 0 ≤ m < n. Then ord(gm) = d so
that gmd = 1; thus n divides md, that is, k divides m. Thus gm ∈ 〈gk〉, and since
both groups have order d, we see that 〈gm〉 = 〈gk〉. �

Proposition 17. Let G be a group and let h, k ∈ G be elements of finite order.
Suppose that gcd(ord(h), ord(k)) = 1. Then 〈h〉 ∩ 〈k〉 = {1}.

Proof. Let g ∈ 〈h〉 ∩ 〈k〉. Then ord(g)|ord(h) and ord(g)|ord(k), so that ord(g)
divides gcd(ord(h), ord(k)) = 1. Therefore ord(g) = 1, so g = 1. �

3.3. Order of Commuting Elements. If two element do not commute, it is
difficult to predict the order of the product. There are groups containing two
element of order two whose product has infinite order. However, if the elements
commute, we can predict the order of the product with some accuracy.

Definition 7. Let G be a group and let h, k ∈ G. We say that h and k commute
if hk = kh. We synonymously say that h centralizes h or k centralizes h.

Proposition 18. Let G be a group and let h, k ∈ G be elements of finite order
which commute. Suppose that 〈h〉 ∩ 〈k〉 = {1}.
Then ord(hk) = lcm(ord(h), ord(k)).

Proof. Exercise. �

Proposition 19. Let G be a group and let h, k ∈ G be elements of finite order
which commute. Suppose that gcd(ord(h), ord(k)) = 1.
Then ord(hk) = ord(h)ord(k).

Proof. Since the orders of h and k are relatively prime, their cyclic subgroups
intersect trivially. Then ord(hk) = lcm(ord(h), ord(k)) = ord(h)ord(k). �
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4. Homomorphisms

4.1. Definition of Homomorphism. Abstract mathematics consists of the study
of objects with certain structures, and the functions between them that in some
way preserve these structures. For example, given two ordered sets, we may wish
to understand the increasing or decreasing functions between them. In the case
of groups, the structure is the binary operation, and the functions preserving that
structure are called homomorphisms.

Definition 8. Let G and H be a groups. A group homomorphism from G to H is
a function φ : G→ H such that

φ(g1g2) = φ(g1)φ(g2) for any g1, g2 ∈ G.

Proposition 20. Let φ : G→ H be a homomorphism. Then

(a) φ(1G) = 1H ;
(b) φ(g−1) = φ(g)−1 for every g ∈ G;
(c) φ(gn) = φ(g)n for every g ∈ G and n ∈ Z.

Proof. We have φ(1G) = φ(1G · 1G) = φ(1G)φ(1G). Multiplying both sides by
φ(1G)−1 in H, we have 1H = φ(1G).

Let g ∈ G. Then 1H = φ(1G) = φ(g−1g) = φ(g)φ(g−1). Multiplying both sides
by φ(g)−1 in H yields φ(g)−1 = φ(g−1).

If n > 0, (c) follows from the definition of homomorphism by induction. Combine
this with (a) and (b) for the cases where n ≤ 0. We acknowledge that (c), in the
stated form, actually includes (a) and (b). �

Proposition 21. Let φ : G→ H be a homomorphism and let K ≤ G.
Then φ �K : K → H is a homomorphism.

Proof. This is obvious. �

4.2. Examples of Homomorphisms. We list a few well known examples of ho-
momorphisms; more examples will arise as we build the theory.

Example 33. Define a function

f : Z→ Z given by f(a) = 2a.

Then f(a + b) = 2(a + b) = 2a + 2b, so f is a homomorphism by the distributive
property. The image of f is the even integers.

Example 34. Let n ∈ Z, n ≥ 2, and define a function

ξn : Z→ Zn by ξn(a) = a.

Then ξn is a homomorphism. This is because we successfully defined addition in
Zn by a+ b = a+ b.

Example 35. Define a function

T : R3 → R3 by T (x, y, z) = (z, x, y).

This linear transformation is a homomorphism of the group of vectors under addi-
tion. Geometrically, this is rotation around the line x = y = z by 120◦.
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Example 36. Define a function

exp : R→ R∗ by exp(x) = ex.

Then exp is a homomorphism from the real under addition to the nonzero reals
under multiplication, because ex+y = exey. The image of exp is R>, the positive
real numbers.

Example 37. Define a function

cis : R→ C∗ by cis(θ) = cos θ + i sin θ.

Then cis is a homomorphism, because cis(θ1 + θ2) = cis(θ1) cis(θ2). The image of
cis is U, the unit circle in the complex plane.

Example 38. Define a function

f : C→ C by f(x+ iy) = x− iy.
This is complex conjugation, and it is a homomorphism of the additive structure
of C. If we restrict to C∗, complex conjugation is a homomorphism of the multi-
plicative structure.

4.3. Properties of Homomorphisms. The homomorphic image of a subgroup is
a subgroup, and the homomorphic preimage of a subgroup is a subgroup. Compo-
sition of homomorphisms is a homomorphism. The order of a homomorphic image
of an element divides the order of the element. We now show these basic facts.

Proposition 22. Let φ : G→ H be a homomorphism and let K ≤ G.
Then φ(K) ≤ H.

Proof. We verify the three properties of a subgroup.
(S0) Since K is a subgroup of G, 1G ∈ K. Since φ(1G) = 1H , 1H ∈ φ(K).
(S1) Let h1, h2 ∈ φ(K). Then there exist k1, k2 ∈ K such that φ(k1) = h1

and φ(k2) = h2. Let k = k1k2, and since K is a subgroup, k ∈ K; we have
φ(k) = φ(k1k2) = φ(k1)φ(k2) = h1h2, which shows that h1h2 ∈ φ(K).

(S2) Let h ∈ φ(K). Then h = φ(k) for some k ∈ K. Since K is a subgroup,
k−1 ∈ K, and φ(k−1) = φ(k)−1 = h−1, so h−1 ∈ φ(K). �

Proposition 23. Let φ : G→ H be a homomorphism and let K ≤ H.
Then φ−1(K) ≤ G.

Proof. We verify the three properties of a subgroup.
(S0) Since K is a subgroup of H, 1H ∈ K, and since φ(1G) = 1H , 1G ∈ φ−1(K).
(S1) Let g1, g2 ∈ φ−1(K). Then there exist k1, k2 ∈ K such that φ(g1) = k1

and φ(g2) = k2. Since φ is a homomorphism and K is a subgroup, φ(g1g2) =
φ(g1)φ(g2) = k1k2 ∈ K. Thus g1g2 ∈ φ−1(K).

(S2) Let g ∈ φ−1(K). Then φ(g) = k for some k ∈ K, and since K ≤ H,
k−1 ∈ K. Thus φ(g−1) = φ(g)−1 = k−1 ∈ K, so g−1 ∈ φ−1(K). �

Proposition 24. Let φ : G→ H and ψ : H → K be homomorphisms.
Then ψ ◦ φ : G→ K is a homomorphism.

Proof. If g ∈ G, then ψ ◦ φ(g) means ψ(φ(g)). Let g1, g2 ∈ G. Then

ψ(φ(g1g2)) = ψ(φ(g1)φ(g2)) = ψ(φ(g1))ψ(φ(g2)).

�
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Proposition 25. Let φ : G→ H be a homomorphism and let g ∈ G be an element
of finite order. Then ord(φ(g)) | ord(g).

Proof. Let ord(g) = n. Then φ(g)n = φ(gn) = φ(1G) = 1H . Thus n is an exponent
of φ(g). �

Proposition 26. Let G and H be groups with g ∈ G and h ∈ H.
If ord(h) | ord(g) <∞, or ord(g) =∞, then the function

φ : 〈g〉 → 〈h〉 by φ(gk) = hk

is a well-defined homomorphism.

Proof. Suppose φ is well-defined; then φ(gigj) = φ(gi+j) = hi+j = hihj =
φ(gi)φ(gj), so φ is a homomorphism. If ord(g) = ∞, then φ is necessary well-
defined, since there is only one way to write an element of 〈g〉 as gk. Thus suppose
ord(g) <∞.

Let n = ord(g) and m = ord(h). Since m | n, there exists k ∈ Z such that
n = mk. To see that φ is well-defined, suppose that gi = gj ; we wish to show
that hi = hj . Now gj−i = 1, so n | j − i, so j − i = nl for some l ∈ Z. Thus
hj−i = hnl = hmkl = (hm)kl = 1kl = 1. �

Corollary 1. The homomorphic image of a cyclic group is cyclic.

4.4. Definition of Isomorphism. Of particular concern are those structure pre-
serving functions that are bijective, because this sets up a correspondence between
the objects which allows us to see that they are “essentially the same”; a change of
notation makes them the same.

Definition 9. An injective homomorphism is called a monomorphism. A surjective
homomorphism is called an epimorphism. A bijective homomorphism is called an
isomorphism. If there exists an isomorphism between the groups G and H, we say
that G and H are isomorphic, and write G ∼= H.

Proposition 27. Let G be a group. Then idG : G→ G is an isomorphism.

Proof. This is obvious. �

Proposition 28. Let φ : G→ H be an isomorphism.
Then φ−1 : H → G is an isomorphism.

Proof. By definition, φ is bijective, so it is invertible. Let h1, h2 ∈ H. Since φ is
bijective, there exist unique g1, g2 ∈ G such that φ(g1) = h1 and φ(g2) = h2. Then
h1h2 = φ(g1)φ(g2) = φ(g1g2). Thus φ−1(h1h2) = g1g2 = φ−1(h1)φ−1(h2). �

Proposition 29. Let G be a collection of groups.
Then isomorphism is an equivalence relation on G.

Proof. The identity map on a group establishes the reflexivity of isomorphism. The
symmetry relation is established by the fact that bijective maps are invertible. The
transitivity relation is given by the fact that the composition of homomorphisms is
a homomorphism, and the composition of bijections is a bijection. �

Example 39. The function exp : R → R> is an isomorphism from the additive
group of real numbers to the multiplicative group of positive real numbers, with
inverse log : R> → R. Thus (R,+, 0) ∼= (R>, ·, 1).
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Example 40. The function f : Zn → Un, given by f(k) = cis(2πk/n) is well-
defined, and is an isomorphism from the additive group of integers modulo n to the
multiplicative group of nth roots of unity. Thus (Zn,+, 0) ∼= (Un, ·, 1).

4.5. Kernels. Homomorphisms are consistent in the sense that the cardinalities of
the preimages of any two points are the same. This is a major theme in algebra, and
we begin to develop it now. We start by showing the a homomorphism is injective
if and only if its kernel is trivial.

Definition 10. Let φ : G→ H be a homomorphism.
The kernel of φ is the subset of G denoted by ker(φ) and defined by

ker(φ) = {g ∈ G | φ(g) = 1H}.

Proposition 30. Let φ : G→ H be a homomorphism. Then ker(φ) ≤ G.

Proof. The kernel of φ is the preimage of the trivial subgroup {1H} ≤ H, and as
such, it is a subgroup of the domain G. �

Example 41. Consider the homomorphism ξ : Z → Zn given by ξ(a) = a. Then
ξ(a) = 0 if and only if a ≡ 0 (mod n), that is, if a is a multiple of n. Thus the
kernel of ξ is

ker(ξ) = nZ = {a ∈ Z | a = nb for some b ∈ Z}.

Example 42. Consider the homomorphism cis : R→ U. Now cis θ = 0 if and only
if θ = 2πk for some integer k. The kernel of cis, then, is the subgroup of R given as

ker(cis) = 2πZ = {x ∈ R | x = 2πk for some k ∈ Z}.

Example 43. Consider the linear transformation T : R3 → R3 given as projection
onto the xy-plane. Then T is a homomorphism of additive groups, and the kernel
of T is the z-axis.

Proposition 31. Let φ : G→ H be a homomorphism.
Then φ is injective if and only if ker(φ) = {1G}.

Proof.
(⇒) Suppose the φ is injective. Since the identity of G maps to the identity of H,
no other element of G may map to the identity of H.
(⇐) Suppose that ker(φ) is trivial. Then

φ(g1) = φ(g2)⇔ φ(g1)φ(g2)−1 = 1H

⇔ φ(g1)φ(g−12 ) = 1H

⇔ φ(g1g
−1
2 ) = 1H

⇔ g1g
−1
2 = 1G

⇔ g1 = g2.

�



16

5. Cosets

5.1. Definition of Cosets. The preimages of points in the image of a homomor-
phism are examples of cosets, and they are “translations” of the kernel. We give
the general definition of cosets, and eventually see how they are translations of a
kernel exactly when they are translations of what is known as a normal subgroup.

Definition 11. Let G be a group and H ≤ G. Let g ∈ G.
The left coset at g of H in G is the set

gH = {gh | h ∈ H}.
The right coset at g of H in G is the set

Hg = {hg | h ∈ H}.

Proposition 32. Let G be a group and H ≤ G. Let g, g1, g2 ∈ G. Then

(a) g ∈ gH;
(b) g ∈ Hg;
(c) gH = H ⇔ g ∈ H;
(d) Hg = H ⇔ g ∈ H;
(e) g1H = g2H ⇔ g−11 g2 ∈ H;
(f) Hg1 = Hg2 ⇔ g2g

−1
1 ∈ H.

Proof. First note that since 1 ∈ G, H is a coset of H in G, specifically, H = 1H.
Also g ∈ gH since g = g · 1. This proves (a).

Thus if gH = H, then g ∈ H.
If g ∈ H, then gH ⊂ H by closure, because H is a group. Since g−1 is also in

H, we have g−1H ⊂ H, so H ⊂ gH; thus gH = H. This proves (c).
If g1H = g2H, then H = g−11 g2H, so g−11 g2 ∈ H. If g−11 g2 ∈ H, then g−11 g2H =

H, so g2H = g1H. This proves (e).
The proofs for right cosets are analogous. �

Definition 12. Let G be a group and let H ≤ G. Let g1, g2 ∈ G.
We say that g1 and g2 are left congruent modulo H if g−11 g2 ∈ H.
We say that g1 and g2 are right congruent modulo H if g1g

−1
2 ∈ H.

Proposition 33. Let G be a group and H ≤ G. Then left and right congruence
modulo H is an equivalence relation.

Proof. Let g ∈ G. Then g−1g = 1 ∈ H, so g is left congruent to itself modulo H.
Thus left congruence is reflexive.

Let g1, g2 ∈ G. Suppose that g−11 g2 ∈ H. Thus g−12 g1 = (g−11 g2)−1 ∈ H since H
is closed under inverses. Thus left congruence is symmetric.

Let g1, g2, g3 ∈ G. Suppose that g−11 g2 ∈ H and g−12 g3 ∈ H. Then g−11 g3 =
g−11 g2g

−1
2 g3 ∈ H since H is closed under multiplication. Thus left congruence is

transitive.
The proof for right congruence is analogous. �

Corollary 2. Let G be a group and let H ≤ G. Then the collection of left (right)
cosets of H in G partition G.
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5.2. Lagrange’s Theorem. We now show that the size of a subgroup divides the
size of a group; this is known as Lagrange’s Theorem. Thus the size of a cyclic
group is the order of a generator; for this reason, the word order has come to mean
the cardinality of a group.

Definition 13. Let G be a group. The order of G is |G|.

Proposition 34. Let G be a group and let H ≤ G. Let g ∈ G. Then the maps

λg : H → gH given by φ(h) = gh

and
ρg : H → Hg given by φ(h) = hg

are bijective.

Proof. Let gh ∈ gH; then h 7→ gh, so λg is surjective. Let gh1, gh2 ∈ gH; then
h1 = h2 by cancellation, so λg is injective. The proof for ρg is analogous. �

Corollary 3. Let G be a group and let H ≤ G. Let g ∈ G. Then

|gH| = |Hg| = |H|.

Definition 14. Let G be a group and H ≤ G. The collection of left cosets of H
in G is called the left coset space of H in G. The collection of right cosets of H in
G is called the right coset space of H in G.

Proposition 35. Let G be a group and H ≤ G. Then there is a correspondence
between the left and right coset spaces of H in G given by

gH ↔ Hg−1.

Proof. The map φ : gH 7→ Hg−1 is well-defined and injective:

g1H = g2H ⇔ g−12 g1H = H

⇔ g−12 g1 ∈ H
⇔ Hg−12 g1 = H

⇔ Hg−12 = Hg−11 .

Since φ(g−1H) = Hg, the map is surjective. �

Corollary 4. Let G be a group and H ≤ G. Then the left coset space of H in G
and the right coset space of H in G have the same cardinality.

Definition 15. Let G be a group and let H ≤ G. The index of H is G is the
cardinality of the left coset space of H in G, and is denoted by [G : H].

Theorem 1. (Lagrange’s Theorem)
Let G be a finite group and H ≤ G. Then |G| = |H|[G : H].

Proof. The cardinality of each left coset is the cardinality of H. There are [G : H]
of these in G. Since these cosets form a partition of G, the result follows. �
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Proposition 36. Let G be a finite group and let g ∈ G.
Then ord(g) divides |G|.

Proof. Since 〈g〉 ≤ G and ord(g) = |〈g〉|, the result follows from Lagrange’s Theo-
rem. �

Proposition 37. Let G be a finite group such that |G| is prime.
Then G is cyclic.

Proof. Let G be a group of order p, where p is prime. Let p ∈ G. Then ord(g)||G|
so ord(g) = p or ord(g) = 1. Thus if g 6= 1 then G = 〈g〉. �

5.3. The Exponent of a Group. If every element in a group G has finite order,
it is possible that there is a single positive integer k which is an exponent for every
element in the group; that is gn = 1 for every g ∈ G, whatever the order of g.
Certainly, if this happens, the order of g will divide n.

Definition 16. Let G be a group. The exponent of G is the smallest positive
integer n ∈ N such that gn = 1 for every g ∈ G, if such an integer exists. The
exponent of G is denoted by exp(G).

Proposition 38. Let G be a finite abelian group.
Then G has an element of order exp(G).

Proof. Let exp(G) = pa11 . . . pann be the unique factorization of exp(G) into powers of
distinct primes. Let g be an element ofG of largest order, and suppose that ord(g) <

exp(G). Then ord(g) = pb11 . . . pbnn , where 0 ≤ bi ≤ ai, because ord(g)| exp(G). We
assume that at least one of the bi’s is less than ai; without loss of generality, b1 < a1.

Now for some element h ∈ G, ord(h) = pc11 . . . pcnn where c1 > b1; otherwise,

pb11 p
a2
2 . . . pann would be an exponent for every element in G. Now g′ = gp

b1
1 has

order pb22 . . . pbnn and h′ = hp
c2
2 ...pcnn has order pc11 . Then g′h′ has order pc11 p

b2
2 . . . pbnn ,

which is greater than ord(g), a contradiction. �

Proposition 39. Let G be a finite abelian group.
Then G is cyclic if and only if |G| = exp(G).

Proof. If G is cyclic with generator g, then |G| = ord(g). For gn ∈ G, (gn)ord(g) = 1,
so ord(g) is an exponent of gn. But nothing smaller than ord(g) is an exponent of
g. Thus exp(G) = ord(g).

Now suppose that |G| = exp(G). Then G has an element g of order |G|. Then
G is generated by g. �
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6. Quotients

6.1. Normal Subgroups. We wish to put a group structure on the left coset
space of a subgroup in a group. This requires that the subgroup has the property
of normality.

Definition 17. Let G be a group and H ≤ G. We say that H is a normal subgroup,
and write H / G, if gH = Hg for every g ∈ G.

Proposition 40. Let G be a group and let H ≤ G. The following conditions are
equivalent:

(1) gH = Hg for every g ∈ G;
(2) g−1Hg = H for every g ∈ G;
(3) g−1Hg ⊂ H for every g ∈ G.

Proof. That (1)⇔ (2) and (2)⇒ (3) are obvious.
Suppose that g−1Hg ⊂ H for every g ∈ G. Let g ∈ G; then g−1 ∈ G, so

gHg−1 ⊂ H. Thus H ⊂ g−1Hg. �

Proposition 41. Let G be a group. Then G / G and 1 / G.

Proposition 42. Let G be a group and let N be a collection of normal subgroups
of G. Then ∩N is a normal subgroup of G.

Proof. Let N = {Hα / G | α ∈ A}, where A is some indexing set. Then for any
g ∈ G, g−1(∩α∈AHα)g = ∩α∈Ag−1Hαg = ∩α∈AHα. �

Proposition 43. Let G be an abelian group and let H ≤ G. Then H / G.

Proof. For H / G and g ∈ G, h ∈ H we have gh = hg. Thus gH = Hg. �

Proposition 44. Let φ : G → H be a homomorphism and let K = ker(φ). Then
K / G.

Proof. We have φ(g−1Kg) = φ(g)−1φ(K)φ(g) = φ(g)−1 · 1H · φ(g) = 1H . Thus
g−1Kg ⊂ K. �

Definition 18. Let G be a group and let X,Y ⊂ G. Set

XY = {xy ∈ G | x ∈ X and y ∈ Y } and X−1 = {x−1 ∈ G | x ∈ X}.

Proposition 45. Let G be a group and let H,K ≤ G. Then HK ≤ G if and only
if HK = KH.

Proof. If M ≤ G, then M−1 = M . Thus if HK ≤ G, then HK = (HK)−1 =
K−1H−1 = KH.

Suppose HK = KH. Let h1, h2 ∈ H and k1, k2 ∈ K so that h1k1 and h2k2
are arbitrary members of HK. Since HK = KH, there exists k3 ∈ K such that
k1h2 = h2k3. Then h1k1h2k2 = h1h2k3k2 ∈ HK.

Let h ∈ H and k ∈ K so that hk is an arbitrary member of HK. Then (hk)−1 =
k−1h−1 ∈ KH = HK. Thus HK ≤ G. �

Proposition 46. Let G be a group, H ≤ G, and K / G. Then HK = KH, and
HK ≤ G.

Proof. We have hK = Kh for every h ∈ H, so HK = KH. Thus HK ≤ G by the
previous proposition. �
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6.2. Factor Groups. We are now in a position to show that multiplication of
cosets of a normal subgroup produces a new group.

Proposition 47. Let G be a group and H /G. Denote the collection of left cosets
of H in G by G/H. Define a binary operation on G/H by

(g1H) · (g2H) = (g1g2)H.

Then · is well defined, and G/H is a group under this operation, with identity
element H and inverses (gH)−1 = g−1H.

Proof. To see that this operation is well defined, let g1, g2 ∈ G be such that
g1H = g2H. Then g−12 g1 ∈ H and g−11 g2 ∈ H. Let gH be another coset. Then
(g1H)(gH) = g1gH by definition. But g1gH = g1gHH because HH = H. Since H
is normal, gHH = HgH. Thus g1gH = g1gHH = g1HgH = g2HgH = g2gHH =
g2gH.

The operation is associative by the associativity of G. �

Definition 19. Let G be a group and H / G. The left coset space of H in G is
denoted G/H. Then G/H with the binary operation defined above is called the
quotient group, or factor group of G over H. This group is known as G modulo H.

Proposition 48. Let G be a group and H/G. Define β : G→ G/H by β(g) = gH.
Then β is a surjective homomorphism with kernel H.

Proof. Let g1, g2 ∈ G. Note that HH = H and that g2H = Hg2 because H / G.
Thus

β(g1g2) = g1g2H = g1g2HH = g1Hg2H = β(g1)β(g2).

It is clear that β is surjective. �

Remark 6. Thus the kernel of every homomorphism is normal, and every normal
subgroup is the kernel of a homomorphism.

6.3. Isomorphism Theorems. Quotients give us a way to understand homomor-
phic images, and vice versa, through the following important theorems.

Theorem 2. (First Isomorphism Theorem)
Let φ : G→ H be a group homomorphism with kernel K. Let β : G→ G/K be the
canonical homomorphism. Let φ : G/K → H be given by φ(gK) = φ(g). Then

(a) φ is a well defined injective homomorphism;
(b) φ = φ ◦ β;
(c) if φ is surjective, then φ is bijective, and G/K ∼= H.

Proof. To show that φ is well-defined and injective, let g1, g2 ∈ G so that g1H and
g2H are arbitrary members of G/K. Then

g1K = g2K ⇔ g−12 g1 ∈ K
⇔ φ(g−12 g1) = 1H

⇔ φ(g1) = φ(g2).

Also φ is a homomorphism because φ is. That φ = φ ◦ ψ is true by definition. It
is clear that if φ is surjective, then so is φ, in which case φ is bijective, so it is an
isomorphism. �
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Theorem 3. (Second Isomorphism Theorem)
Let G be a group, H ≤ G, and K / G. Then HK ≤ G, H ∩K /H, and

HK

K
∼=

H

H ∩K
.

Proof. We have already seen that HK ≤ G and H ∩ K ≤ H. Let h ∈ H; then
h−1(H ∩K)h = h−1Hh ∩ h−1Kh = H ∩K, so H ∩K /H.

Let H = H/(H ∩K). Let φ : HK → H be given by hk 7→ h.
This map is a homomorphism:

φ(h1k1h2k2) = φ(h1h2k3k2) = h1h2

for some k3 ∈ K because h2K = Kh2.
Note that for k ∈ K, φ(k) = 1. Thus ker(φ) = K.
This map is clearly onto, so by the first isomorphism theorem the induced map

φ is an isomorphism. This is exactly the isomorphism we seek. �

Theorem 4. (Third Isomorphism Theorem)
Let G be a group with normal subgroups K and H and suppose that K ≤ H. Then

G/K

H/K
∼=
G

H
.

Proof. Let φ : G/K → G/H be given by gK 7→ gH. This map is well defined since
K ⊂ H. It is a homomorphism since H / G. It is clearly onto and its kernel is
H/K. �

6.4. Correspondence Theorems. The subgroups of a homomorphic images cor-
respond to the subgroups of the domain which contain the kernel.

Proposition 49. Let φ : G→ H be a surjective homomorphism with kernel K Let
S be the collection of subgroups of G which contain K and let T be the collection of
subgroups of H. Define

Φ : S→ T by Φ(S) = φ(S).

Then Φ is an inclusion preserving bijection.

Corollary 5. Let G be a group and let K /G. Let S be the collection of subgroups
of G which contain K and let T be the collection of subgroups of G/K. If S ≤ G,
set S/K = {sK | s ∈ S}. Define

Φ : S→ T by Φ(S) = S/K.

Then Φ is an inclusion preserving bijection.
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